Skip to main content

Das 3D-Scan Lab - Das 3D-Archiv - gestalten und üben

  • Projektleitung: Fabian Rüeger, Michael Häfeli und Christof Glaus
  • Institution: BBW Winterthur
  • Kontakt: fabian.rueeger@bbw.ch
  • Ein Laboratorium für 3D-Objekte im Berufskundeunterricht

Beschreibung

Stärker als bei den Scan-Projekten «Der Laserscan – Räume digital abbilden» und «Photogrammetrie mit Drohnen» geht es in diesem Projekt darum reale Objekte zu scannen und digital sichtbar zu machen, diese als Anschauungsmaterial im Unterricht zur Verfügung zu stellen, aber auch zu zeigen, wie sich die Relevanz der Erstellung und Verwendung von digitalen 3D-Objekten im Wirtschaftskreislauf stark verändert hat.

Anschauungsmaterial den Lernenden zur Verfügung zu stellen beziehungsweise den Lernenden die Werkzeuge und Instrumente ihres Berufes sichtbar zu machen, ist eine traditionelle Methode des Berufskunde-Unterrichts. Im Rahmen der digitalen Transformation entstehen und entwickeln sich immer mehr Technologien, die das Erfassen und Vorführen von Anschauungsmaterial vereinfachen. Eine dieser Technologien ist das Scannen. Eine Technik, die im 2D-Bereich schon seit Jahren intensiv eingesetzt wird, besitzt im 3D-Bereich im Berufsalltag sowie im Unterricht noch nicht die gleiche Bedeutung. Das hier noch zum Teil verborgene Potential soll dieses Projekt sichtbar machen. Dabei sind sowohl didaktische Vorteile durch die 3D-Visualisierung erkennbar wie auch Kostenvorteile gegenüber der kontinuierlichen Beschaffung von neuen Anschaungsmodellen – beziehungsweise die Möglichkeit Anschauungsmodelle in Dimensionen zu generieren, welche im Schulzimmer nicht mal Platz finden würden.

Fabian Rüeger als Kontaktperson dieser Projektgruppe, arbeitet bei der Müller Technologie AG, welche in der Entwicklung und Produktion von Spezialfahrzeugen tätig ist. Um mit der kontinuierlichen Digitalisierung Schritt zu halten, betreut er die Evaluation für eine mögliche Beschaffung eines 3D-Scan-Gerätes, zur vereinfachten Bestandesaufnahme von Fahrzeugen und Maschinen, an welchen Änderungen eingebracht werden sollen.

Es geht in diesem Projekt darum, mittels 3D-Objekten Funktionen und Systeme besser aufzeigen zu können, um so der Komplexität des berufskundlichen Unterrichtes gerecht zu werden. Das Ziel ist, dass die Lehrpersonen in der Fachgruppe «Landmaschinen-/Baumaschinenmechaniker:innen» ein 3D-Archiv einrichten, das direkt für den Unterricht genutzt werden kann. Dieses Archiv wird auch anderen Fachgruppen und Schulen zugänglich gemacht. Dieses Archiv soll kollaborativ seitens der Lehrpersonen, aber auch der Lernenden gefüllt werden.

 

 

Dieses Ziel wird in mehreren Etappen erreicht, zu Beginn wird ein Wunschinventar von 3D-Objekten erstellt, mit dem das bestehende Anschauungsmaterial ersetzt oder ergänzt werden soll. Als zweiter Schritt wird auf Sharepoint ein Space eingerichtet. SharePoint Spaces ist eine webbasierte Plattform, über die Nutzer:innen mit Hilfe von 2D-und 3D-Webparts relativ einfach Mixed-Reality-Inhalte erstellen und teilen können. In einem dritten Schritt werden mit dem LIDAR-Scanner des iPad Pro (Polycam-App), aber auch mit dem Leica-BLK 360 Scanner der BBW Objekte gescannt. Die Stärken der beiden Geräten werden innerhalb des Projektes evaluiert und die Anwendung dementsprechend geplant. Bei Bedarf werden die gescannten Objekte mit Hilfe des 3D-CAD-Programms «Inventor» bearbeitet, beschriftet, mit Schlagworten versehen und in das Archiv gestellt. Als letzter Schritt wird die Thematik der Passgenauigkeit der 3D-Technologie im Produktionsprozess einer Ware im Rahmen der Allgemeinbildung in den Themenbereichen «Wirtschaft» und «Technologie» mit Hilfe eines digitalen Onlinekurses fachübergreifend behandelt. In diesem Onlinekurs wird auch das 3D-Archiv integriert.

Innovationspotential

  • Eine im Entwicklungs-/Forschungsbereich bereits angewandte Technologie wird integriert in die Berufsbildung
  • Die traditionellen Materialarchive werden durch digitale Materialien ergänzt beziehungsweise ersetzt und für die Wissensaneignung auf verschieden Arten visualisiert und in den Lernprozess integriert
  • SharePoint Spaces wird gewinnbringend für den Unterricht eingesetzt
  • Das Erreichen von Passgenauigkeit von Werkelementen wird gelehrt
  • Komponenten von High-Tech-Systemen werden im Bildungskontext vernetzt angewandt, so die Scanner-Hardware von Leica und Apple, Scanner-Technologie wie LIDAR und Photogrammetrie und 3D-CAD-Programme wie Inventor oder AutoCAD.
  • Die Photogrammetrie-Technologie wird gewinnbringend für den Unterricht eingesetzt

 

Didaktisch-methodisches Konzept

  • Agilität in der Koordination unter den Lehrpersonen
  • Handlungsorientiert

Wirkung

  • Anschauungsmaterial für den Berufskundeunterricht wird zeitlich und räumlich unbegrenzt zur Verfügung gestellt
  • Der Zugang auf Material für den Berufskundeunterricht wird vereinfacht
  • Lehrpersonen werden mit in Schulen bereits eingerichteten Technologien geschult, als Multiplikatoren geben sie das Wissen an andere Lehrpersonen weiter
  • Studierende der Weiterbildung/Lernende der Grundbildung setzen sich mit dieser Technologie im Unterricht auseinander
  • Technologische Vernetzung über Schulen, Fachgruppen und Abteilungen hinweg wird verstärkt, da Inhalte der 3D-Archive über einen gemeinsamen Zugang geteilt werden kann
SAMR-Modell

Erläuterung zum SAMR-Modell.

Im SAMR-Modell kann das Projekt im Bereich "Redefinition" eingeteilt werden, weil es Aufgaben ermöglicht, welche früher so nicht vorstellbar waren.

 

Mit 3D-Druck Bildungsperspektiven öffnen

  • Projektleitung: Andreas Spielmann, Markus Roffler, Mario Gomez, Stefan Graber und Florian Mascherin
  • Institution: Berufsbildungsschule Winterthur
  • Kontakt: andreas.spielmann@bbw.ch
  • Dieses Projekt zielt darauf ab, praktisch begabte Berufsleute die Welt der 3D-Modelle, -Druckprozesse und -Technologien zu eröffnen und sie in diesem Bereich zu befähigen.

Beschreibung

In diesem Projekt wird den Lernenden nicht nur die 3D-Drucktechnologie vermittelt, sondern sie werden in der konkreten Anwendung und der kritischen Auseinandersetzung befähigt, das Potential und die Komplexität dieser Technologie zu entdecken. Sie lernen, 3D-Druckverfahren in Bezug auf ihre Relevanz für verschiedene Industriezweige und deren Beitrag zur Kreislaufwirtschaft zu bewerten. Durch die Lern- und Praxisangebote werden die Lernenden darauf vorbereitet, 3D-Drucktechnologien verantwortungsbewusst und innovativ in ihre zukünftigen beruflichen Felder zu integrieren.

Unser Ansatz konzentriert sich auf die praxisnahe Anwendung von 3D-Drucktechnologien, wo die Lernenden durch direkte Interaktion mit den Druckern und Materialien lernen. Sie werden in die Bedienung und Wartung der Druckgeräte eingeführt und setzen digitale Entwurfswerkzeuge für die Erstellung eigener Druckprojekte ein. Diese handlungsorientierte Methodik soll die Schüler mit den notwendigen Fähigkeiten ausstatten, um in einer zunehmend digitalisierten Arbeits- und Ausbildungswelt kompetent zu agieren. Sie analysieren und reflektieren die Realisierung von 3D-Modellen aufgrund von Wirtschaftlichkeit und Material.

Das Projekt integriert Digitalität, indem es die Lernenden mit der praktischen Anwendung digitaler Werkzeuge und Geräte im Kontext des 3D-Drucks vertraut macht. Sie erlernen den Umgang mit spezialisierter Software zur Modellierung und bereiten 3D-Druckaufträge vor, wodurch digitale Kompetenzen gefördert werden.

 

 

Didaktisch-methodisches Konzept

Flexibles und interaktives Lernumfeld:
Schaffung eines dynamischen Lernraums, der Experimentieren und praktisches Lernen fördert.

Projektbasiertes Lernen:
Durchführung von realen Projekten, bei denen die Lernenden die Phasen von Planung, Design, Produktion und Reflexion durchlaufen.

Selbstgesteuertes Lernen:
Förderung von Eigeninitiative und Selbstständigkeit der Lernenden durch offene Aufgabenstellungen und selbst zu erforschende Themen. In Projektarbeiten und Freifachkursen entdecken die Lernenden eigenverantwortlich den 3D-Druck im eigenen Berufsumfeld. Mit Hilfe von exemplarischen 3D-Modellen angeleitet, werden alle Schritte für den vollständigen 3D-Druckprozesse durchgegangen.

Hands-on-Methoden:
Einsatz praktischer, erfahrungsbasierter Lernmethoden wie Workshops, Laborarbeiten und Prototyping, um den Transfer zwischen Theorie und Praxis und umgekehrt zu verstärken.

 

Wirkung

Das Projekt adressiert primär Lernende in technischen Berufen sowie Lehrpersonen. Es schlägt eine Brücke zwischen Praxis und Theorie, fördert lebenslanges Lernen und erweitert den langfristigen Bildungszugang. Als nachhaltige Bildungsinnovation überwindet es traditionelle Bildungsgrenzen und stärkt Winterthur als Wissensstandort. Die Evaluation umfasst Kompetenzzuwachs, Anwendungsrelevanz sowie Zufriedenheit und Engagement, erfasst durch regelmässige Feedback-Schleifen und praxisbezogene Leistungsbewertungen.

Es fördert zudem die Bereitschaft zur kontinuierlichen Weiterbildung und zur Auseinandersetzung mit zukünftigen technologischen Herausforderungen.

Lehrpersonen und Lernenden kooperieren in einem 3D-Lab, entwickeln gemeinsam Projekte und führen sie durch, unter Einbezug von 3D-Technologien.

3D-Drucktechnologien werden in die Grundbildung verschiedener Berufsfelder eingeführt, um den Anforderungen einer digitalisierten Arbeitswelt gerecht zu werden.

Das Projekt stärkt zudem die Zusammenarbeit zwischen Berufsfachschulen, BMS und Fachhochschulen (wie der ZHAW), um einen nahtlosen Bildungsweg zu fördern und Synergien zu nutzen.


SAMR-Modell

Im SAMR-Modell kann das Projekt in den Bereich "Redefinition" eingeteilt werden, da es mit der der 3D-Drucktechnologie Aufgaben- und Zusammenarbeitsmöglichkeiten generiert, welche vorher so nicht möglich waren..